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Abstract

The northern Negev terrain has been shaped by deformational events since the early
Mesozoic and can be regarded as an evolution model for much of the Levant. A simple
basin inversion model, from Triassic Neo-Tethyan rifting to Cenomanian Alpine-related
convergence, was proposed to explain lateral thickness and facies variations on a regional
scale. However, subsurface data has challenged this inversion model for some of the
structures in the Northern Negev. Moreover, spatiotemporal distribution of deformation
Is poorly resolved, along with timing the onset of Alpine related shortening. A dense
network of 2D seismic lines and check-shot surveys in Qeren and Agur area in the
northern Negev offers an opportunity to restore the deformation on both Qeren and Agur
structures. In this study, structural sequential restoration is carried out on two interpreted
seismic sections in the northern Negev. Effects of sediment compaction, isostatic
adjustment, fault related folding and fault slip are accounted for in order to restore each
seismic section for its deposition time. A total of ten horizons are restored, timed from
base Triassic to Coniacian in upper Cretaceous. The restoration confirms regional tilt
from SE to NW in the early Jurassic and supports the basin inversion concept. The study
reveals middle Jurassic reverse faulting that cut across the Qeren and Agur fault
structures. Indication for possible Cenomanian strike slip activity is also detected. The
use of structural restoration in an area with tectonic constraints appears to be effective in
shedding light on various phases of deformation on complex faults and can now be used
as a validation technique in poorly constrained geological structures elsewhere.
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1 Background

1.1 General introduction

The Qeren area (Figure 1) has been marked by the Israel Electricity Company as a
possible area for the location of a nuclear power plant in the 1980s. This has brought
extensive research to the area. Most of the rocks exposed on the Qeren-Agur area belong
to the Avdat group (Braun, 1964) of Eocene age, and more specifically to the Nizzana
formation (Zilberman, 1980) (Figure 2). Eocene limestones crop out on anticlines
throughout the area whereas the synclines are lined by Quaternary, Pleistocene and
Holocene sand dunes that overlie continental Neogene sediments (Zilberman, 1980). The
study area of this work is 25km x 45km wide and it comprises the complex fault structures
of Qeren and Agur in the sub-surface. This area has been a site of platform deposition
during all of its post Precambrian history. The section comprises mainly carbonates with
some sandstones and shales and an episode of gypsum deposition in the late Triassic
(Druckman et al., 1995) (Figure 3). Reflectors ranging from base Triassic to upper
Cretaceous were affected by the Qeren and Agur fault structures (Figure 25,Figure 26)

and are analyzed and discussed in this work.
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Figure 1: Geological map of the study area, along with Geographic location. 2D seismic sections discussed in

this work are marked in red.



Due to the complexity of the fault structures, the Qeren-Rogem-Hazerim faults will be

referred as the Qeren structure, and the Agur-Haluza faults will be referred as the Agur

fault structure. In both structures, the amount of displacement on the main faults varies

on most of the stratigraphic markers throughout the entire sedimentary sequence,

indicating a complex displacement history.
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Figure 2: Stratigraphic table of the Formations exposed in the Qeren-Agur area (Sneh and Avni, 2011)
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Figure 3: Generalized stratigraphic table of the Mesozoic section in the subsurface of the Negev region

(modified after Calvo and Gvirzman 2013)

1.2 Structural framework

The study area spans the north-western hills of the northern Negev desert (Figure 1). The
northern Negev lies on the southern margins of the Levant basin (Kempler and Garfunkel,
1994). A regional subsidence of this area between the early Mesozoic and the Neogene
made room for accumulation of a sedimentary wedge up to a few kilometers thick (Freund
et al., 1975). The Qeren structure consists of the Qeren anticline; its trend is NE-SW and
it is underlain by Qeren faults in the subsurface (Figure 6). The anticline forms a low

ridge, 15 km long, 3 km wide and rising about 100m above its surroundings (Begin, 1981)

(Figure 4).



Figure 4: General location of study area, along with DEM. 2D seismic sections relevant for this work are marked
in red

The Agur structure consists of the Agur anticline revealed in the upper 300m of the
subsurface and is underlain by Agur faults (Figure 5). The structural framework of the
study area at any late Mesozoic datum is dominated by roughly parallel chains of

monoclines, as confirmed by seismic surveys and boreholes (Figure 5).

ir
i
i
H

i ! . L
° O C— = — =
- scoro 1 —
. o . I s [
_ ey e =
omn russun e oL A e 5w
whe e 7

—200.
50
25004
“ee0y L + RO
~asen.
00, 7
4500
5000
- =

Figure 5: Cross section A-A" from Agur to Boger, showing the stratigraphic and structural relations of the

sedimentary sequence to base (druckman et al, 1995). Section location is shown on figure 4

The structural axes are oriented NE-SW (Bruner, 1991; Druckman et al., 1994). From
west to east these are the Agur-Haluza, Qeren/Rogem-Hazerim, Boger-Zavoa, and



Rehme chains (Figure 4). The monoclines are strongly asymmetric, each with a rather
steep southeastern flank and a gently inclined northwestern flank (Druckman et al., 1995)
(Figure 6). Within each monoclinal chain, the amplitude of each individual structure
decreases towards the northeast. At the top Judea level, the monoclinal chains are
separated by the flanks of the next chain, and the overall structural pattern corresponds to
an arrangement of subparallel tilted blocks (Freund, 1979; Reches et al., 1981; Druckman
et al., 1995; Shamir and Eyal, 1995) (Figure 6).
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Deeper Mesozoic levels are offset by normal and reverse faults. Some of the faults
initiated with normal slip during the early Mesozoic and re-activated in a reverse direction
(Freund et al., 1975; Reches et al., 1981; Bruner, 1991; Druckman et al., 1994), a process
referred as a 'basin inversion' (Williams et al., 1989; Lowell, 1995; Guiraud, 1998).



1.2.1 Neotethys extension

During the early Triassic, rifting initiated on the northern edge of the Gondwana super
continent, splitting the edge of the future African Plate. The Paleo-Tethiyan continental
margin was pulled North making space for the expanding Neo-Tethys Ocean and the
construction of a new continental margin (Figure 7) (Stampfli, 2000). According to
onshore geologic observations from around the eastern Mediterranean, this margin was
first deformed by a multi-step Middle Triassic to Early Jurassic (Garfunkel and Derin,
1984) or Late Triassic-Early Jurassic (Ben-Avraham, 1989) extension. According to
recent magnetic anomaly mapping, rifting initiated already in the Permian (Granot, 2016).
This complex rifting phase separated Turkey from the Levant basin and Africa (Figure 7)
along the eastern Mediterranean margin. The separation of Turkey from the Levant led to
the opening of the Levant Basin and to the formation of an oceanic crust (Granot, 2016).
It is suggested that the early Mesozoic orogenic deformation and magmatism in Iran,
Turkey and Greece occurred in island arcs on the western side of the Tethys Ocean,
behind which the eastern Mediterranean expanded as a marginal basin (Garfunkel, 2004;
Stampfli, 2000; Stampfli et al., 2013). It is now located in a region where the major

Arabian, African, and Eurasian plates interact (Figure 8).

Permian-Triassic

Figure 7: Neo-Tethiyan extension and Paleo-Tethys subduction in Permian-Triassic and Early Jurassic.

Location of the Levantine basin and the Sinai plate is circled and marked (modified after Stampfli, 2000).



Part of the eastern Mediterranean basin, a relic of the Neo-Tethys ocean, is now
encountered in the northern Negev (Sengor et al., 1984; Garfunkel and Derin, 1984;
Garfunkel, 1998; Stampfli, 2000; Garfunkel, 2004; Granot, 2016).

A thin sequence of platform sediments covers the area in the Paleozoic (Freund et al.,
1975). In the early Mesozoic, The dominant stratigraphic features observed in the
northern Negev are rapid subsidence and accumulation of thick marine sequences
northwest of the central Negev. Evidence collected from Israel, northern Sinai and Syria
show that the rifting phase was accompanied by the formation of extensive horst and
graben systems (Garfunkel and Derin, 1984; Druckman et al., 1995; Garfunkel, 1998)
and block tilting (Bosworth et al., 1999; Guiraud et al., 2005). The early Mesozoic
extension phase evident in Israel is contemporaneous with orogenic deformation and
magmatism in Turkey and Iran (Freund et al., 1975; Stampfli, 2000).

The main phase of igneous activity in Israel, consisting of alkaline, high-K intermediate
and basic intrusives and volcanics, apparently occurred later than the vertical movements
mentioned above, namely in late Triassic and early Cretaceous (Freund et al., 1975;
Katzir, 1998). Following the rifting phase, from the Late Triassic and onwards, passive
margin drift conditions were established with prolonged post-rift subsidence (Freund et
al., 1975; Garfunkel and Derin, 1984; Stampfli, 2000) that continued until the Late
Eocene, when the continental margin was reactivated along with the Africa—Arabia
breakup (Steinberg et al., 2008; Gvirtzman and Steinberg, 2012).
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1.2.2 Syrian arc convergence phase

Evidences exist for an anticlockwise rotation of Africa in the upper Cretaceous (Bosworth
et al., 1999). This, progressively generated collision between Europe and Africa, giving
birth to the Alps (Jolivet and Faccenna, 2000) and, in its local margin, to the Syrian arc
fold belt (Shahar, 1994; Stampfli, 2000). Evidence of /: 17

shortening during the Cenomanian and throughout the Vi /“4/;”
upper Cretaceous appear across the eastern .. ...... sv /’/V//’/ ’
Mediterranean (Freund et al., 1975; Stampfli, 2000). /”i q

This deformation period was expressed in the formation //‘/ }
of extensive anticlines and synclines known as the % /h;n't ;

Syrian Arc fold belt (Krenkel, 1924; Freund et al., 1975; \\ =
Eyal and Reches, 1983; Eyal, 1996; Walley, 1998; / '5\ /,/ ///,
Bosworth et al., 1999). The trends of the Syrian Arc axes |~/ /\
vary systematically from an E-W in northern Sinai, to \\ o f
an almost N-S in central Israel, and to NE-SW in the .
Palmyra fold and thrust belt in Syria, forming a lateral
distribution of a 1000 km long S shaped feature (Figure
9). In Israel, the folds are exposed inland and are buried
by younger sediments in the coastal plain and continental
shelf (Bruner, 1991; Druckman et al., 1995). The fold
amplitudes range from a few hundred meters to a kilometer and their crests are in places
complicated by secondary domal culminations and saddles (Picard, 1943; Shamir and
Eyal, 1995).

Thickness variations related to the nucleation of the Syrian Arc structures indicate that
the Syrian Arc deformation in the area started in the Cenomanian (Freund and Zak, 1973;
Freund et al., 1975) and continued through the Tertiary (Freund, 1970; Ron and Eyal,
1985; summary by Eyal, 1996; Walley, 1998). Thicknesses also vary on several anticlines
in the Late Eocene—Oligocene sections, indicating two main pulses of tectonic activity
separated by a relatively long and quiet period lasting about 35 Myr (Eyal, 1996; Walley,
1998; Guiraud et al., 2005).



1.2.3 Basin inversion

A change in the configuration of the North Atlantic—Eurasian—African plates during late
Santonian (late Cretaceous) occurred simultaneously with the onset of collision of the
African plate with Eurasia (Stampfli, 2000; Garfunkel, 2004). Progressively, the Tethiyan
oceanic domain south of the Eurasian margin closed from 65 to 35 Ma (Le Pichon, 1982;

Jolivet and Faccenna, 2000).

.
zone of tectonic inversion

10

Santonian

Figure 10: Santonian configuration of part of the Neo-Tethys Ocean. Levantine area is circled, arrows represent

areas with evident basin inversion (modified after Stampfli, 2000).

The collision led to high-pressure metamorphism in the Alps and transpressive inversion
of E-W trending basins, such as the West Netherlands Basin (Bodenhausen and Ott,
1981), along the southwest Bohemian Border zone (Ziegler, 1990) and the eastern
Levantine basin (Guiraud et al., 2005) (Figure 10).

The term inversion refers to a reversal of the sedimentary basin record in its sense of
motion during different stages of basin evolution (Mitra, 1993; Coward, 1994). Basin
inversion can be defined as the process of shortening of extensional basins which is
accommodated by compressional reactivation of pre-existing normal faults (Williams et
al., 1989). As a result, a fault may accommodate net extension at deeper levels with net
contraction associated with an anticline in the upper portion of the faulted rocks (Lowell,
1995; Williams et al., 1989). Thus, initially subsiding areas become subsequently
uplifted.



Basin inversion can occur at different scales and is widely documented in different
tectonic settings. The driving force to the inversion process can be far-field stresses
transmitted within tectonic plates. Basins can be inverted by compression, strike-slip or
combination of both (Coward 1994, Lowell 1995). An example of tectonic inversion
caused by compression are the Atlas Mountains in Morocco, where the ENE-WSW
Triassic-Jurassic Atlas Rift inverted due to NNW-SSE compression caused by Miocene
convergence of Africa and Iberia. The compression resulted into the formation of low-
angle thrusts on both sides of the Atlas (Beauchamp et al., 1999; Brede et al., 1992;
Guiraud and Bosworth, 1997). Strike slip related inversion has been identified in the
western Barents Sea (Norwegian shelf) and dated to Late Paleozoic, Mesozoic and
Cenozoic (Gabrielsen et al. 2011). Inversion structures including reverse faults,
deformation of footwall blocks and deformed fault planes were reported from Turonian
throughout Late Cretaceous and into Early Cenozoic in particular (Gabrielsen et al. 1997).
A common way to detect a basin inversion structure is by the characterization of three
stratigraphic sequences (Figure 11). Pre-rift sequence can be recognized by equal
thickness of strata on hanging walls and footwalls, syn-rift sequence is characterized with
growth faulting, and post-rift sequence that can also be deposited on top of a marked
break-up unconformity, reflecting erosion or non-deposition (Figure 11). A perfect
reversal of net fault slip is unlikely and most inversion structures probably result from

superimposed oblique slip movements (Williams et al.,
1989).

<= —p>
An analysis of thickness variations of the Late Triassic

and Early Jurassic formations in the northern Negev by Rifting

Freund et al. (1975) revealed that in several areas thick
accumulations of these strata are present underneath

present-day monoclines (Figure 12). This observation,

and the recognition that the monoclines are underlain

BRasin Inversion

by high-angle reverse faults, have led the authors to

propose what has become known as the ‘structure e
inversion model’ for the development of the Syrian Arc  Figure 11z Schematic diagram showing a

.. . . . basin inversion (modified after Williams
anticlines in the eastern Levantine basin (Freund et al.,
et al, 1989). Colors represent

1975a; Reches et al., 1981; Bruner, 1991; Jolivet and i atigraphic sequences
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Faccenna, 2000). According to this hypothesis, slip occurred along reverse faults at depth
and led to the development of monoclines or folds in the upper part of the stratigraphic
column (Reches et al., 1981; Eyal and Reches, 1983). Some of the folds are associated
with reactivation of Early Mesozoic normal faults in a reverse motion (Freund et al., 1975;
Druckman et al., 1995).

Reverse faults that underlie the Syrian arc anticlines have been observed in outcrop only
at the Ramon crater in the Negev desert (Freund et al., 1975). Evidence for reverse faults
was also encountered in a few boreholes with apparent section doubling around the study
area of this work: Rehme 1, Zavoa 1 and Sherif 1 (Bruner, 1991; Freund et al., 1975a;
Druckman et al., 1995). It has been shown that essentially the same model also applies
very well to the structural evolution of the south-western Palmyride fold belt in Syria
(Chaimov et al, 1993). Whole-basin scale inversion, documented across the African-
Arabian continental plate (Bosworth et al., 1999), is a manifestation of the Wilson cycle
(Wilson, 1963).

=

65

TECTONIC
INVERSION

Upper

LEVANT BASIN RIFTING

—L T -
Sandslone E Marl and clay E Limestone E' Basalls
Conglomerate Chalk E Dolomite Crystalline basement

Fig. 2. Simplified stratigraphic column and synthesis of the three main tectonic events recognized in Israel. See text for details,
Figure 12: simplified Schematic stratigraphic column and synthesis of the main tectonic events recognized in
Israel (Hardy et al., 2010)
1.3 Structural restoration

Structural restoration is the process of removal of the effects of sediment compaction,
isostatic adjustment, fault-related folding and fault slip that have altered the present day

section since deposition. Restoration is a tool used for defining the amounts of shortening
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or extension in a region (Griffiths et al., 2002; Cukur et al., 2011), assessment of the
timing of hydrocarbon trap development (Baur et al., 2009; Durand-Riard et al., 2013)
unraveling structural and stratigraphic history (Beauchamp et al., 1999), and revealing
tectonically masked features (Tanner et al., 2003).

Restoration of cross-sections (Dahlstrom, 1969), maps (Rouby et al., 2002), or volumes
(Santi et al., 2002; Durand-Riard et al., 2013) has been successfully applied to complex
thrust or normal fault systems. Restoration techniques were also tested through models
for restoration of inverted basins in the lab (Bulnes and McClay, 1999). This lead to
improved understanding of the spatial and temporal development of geological structures,
constraining the kinematics of structural growth (Dahlstrom, 1969; Griffiths et al., 2002;
Cukur et al., 2011).

A seismic section can be restored by inverse modeling (Figure 13). A restored section is
then restored to the time of deposition of the designated reference horizon. Because
sections are restored from the top down, the shape of a restored horizon depends not only
on the deformed structure of the event and the reference horizon, but also on the shape
and the slip of any faults that lie above it in the restored section.

As structural restoration is a kinematic modeling tool, the techniques for the restoration
of a structure are necessarily based on models for the evolution of the geometry.
Structures with complex fault geometries can be restored by making geological

assumptions on the timing of faults and testing various scenarios. The scenario that is

preferred should be geologically viable (Tobergte and Curtis, 2006).

Figure 13: Restoration of a cross section. a- Deformed state section; b- Restored section (Tobergte

and Curtis, 2006)

Structural restoration of seismic data starts with the available interpreted seismic sections.
An interpreted seismic section in depth across a sedimentary basin contains implicit
information about the tectono-stratigraphic evolution of the basin. This information can
be extracted by producing a series of structurally restored seismic sections that illustrate

the subsurface geology for various times in the past. The structural restoration can
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validate the interpreted geometry in cross section, providing information on the processes
of progressive deformation in the region.

The data for the present work were acquired using 2D seismic surveys for hydrocarbon
exploration ween the years 1986-1987. The data were interpreted by Elvira Gelbermann
from the Geophysical Institute of Israel (Gelbermann and Grossovicz, 1990; Fleischer et
al., 1993; Gelbermann, 1995)

2 Research objective

The main objective of this study is to examine the temporal evolution of the Qeren and
Agur structures.
These structures consist of two buried anticlines, Qeren-Rogem and Agur-Haluza, and
associated re-activated faults. The area was chosen because its broad geological story is
rather constrained, thus leaving space for high resolution examination and validation of
the suggested evolution model.
Additional questions that arise from the main objective are:
1. Are there masked tectonic phases of deformation other than the Triassic-early
Jurassic extension and Syrian arc shortening in the upper Cretaceous?
2. When does the Syrian arc shortening initiate in the Agur and Qeren structures,
accepting the lateral migration of the Syrian arc system? (Freund and Zak, 1973)
3. Isthere a difference between the northern and southern segments of the Qeren and
Agur structures?
This study extends previous studies and uses the available 2D seismic sections, 3D
structural maps and borehole data to test known tectonic concepts. Sequential structural
restoration enables us to shed light on second or third order tectonic phenomena that have

eluded the overall plate tectonic framework until now.
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3 Methodology

This study took advantage of various software packages. The seismic data was geo-

referenced using Arcmap GIS and Blue Marble Geographics Global Mapper, depth-
converted using Schlumberger software package Petrel, digitized using Able Software
Corp. R2V. The seismic data was then kinematically analyzed and sequentially restored
using Midland valley Move™,

Move™ is a software package that offers a full range of tools for geometrically

constrained model building and kinematic analysis in 2D and 3D space.

3.1 Workflow

The loading history of a basin can be modeled by sequential back-stripping
and decompaction of balanced geological cross-sections (Griffiths et al., 2002; Tobergte
and Curtis, 2006). Restoration of seismic sections accounts for plastic long-scale
geological processes that determine structure. This allows one to assess the amounts,
rates, and periods of deformation that affected the Negev.

Before starting the restoration process per se, the seismic sections had to be digitized and
depth-converted. The depth-conversion process made use of seismic velocity surveys
from the study area. The sections were digitized using the Move™ digitization tools. The
depth-converted digitized sections were then imported to the 2DMove™ module for
cross-section restoration. The depth-converted sections were balanced and restored by
accounting for compaction, faulting, folding and isostasy for each stratigraphic layer. The
integrity of each layer in the digitized seismic section (e.g., horizon termination,
attachment of horizons to faults and boundaries, and complete closure of polygons) was
checked before restoring each layer.

A complete flowchart of the restoration process is presented in Figure 14.
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Figure 14: Flowchart of restoration process

3.2 Digitization

Eight seismic horizons were digitized using the Able Software Corp. R2V and Blue
Marble Geographics Global Mapper software packages. Surfaces were interpolated using
the Delaunay TIN triangulation method (Delaunay, 1934; Lee and Schachter, 1980)
(Figure 15). 2D seismic and velocity surveys were digitized and integrated into the model

using Move™ digitization tools.

3D Structure

Digitized Faults

‘Mesh surface

~Structural map

Figure 15: From structural scanned map to a 3D structure
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3.3 Depth conversion

Velocity check-shot surveys from the study area were used to convert the sections from
two-way traveltime (twt) to depth. Time and depth were correlated using the interval
velocity measurements for each layer. Then, the depth converted surveys were compared
to lower resolution 3D seismic horizons interpolated across the study area (Druckman et

al., 1994), as a validation step. For the full data refer to section 8.1 in the appendix.

3.3.1 Velocity surveys

Two velocity surveys were used in this work: Qeren_01 and Shizaf _01. These were
check-shot surveys (Figure 16), in which a geophone is locked successively at different
depth levels, and the vertical travel time to each level is measured directly from a source

of energy at the surface (Schlumberger QOilfield Glossary).

Seismic Recording

Elevation Datum \

for Time Zero .
Explosive

Shot

Down-going Seismic
Wavelet

Gecphone 1

3.3.2 3D structure

The three-dimensional structure (Figure 17,Figure 18) was constructed based on the
interpretation of some 2000 km of seismic lines, acquired over several generations of oil

prospecting surveys.
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Figure 17: 3D structure of study area that is cut vertically by faults

The processed seismics were interpreted by E. Gelbermann (Gelbermann and
Grossowicz, 1990; Fleischer et al., 1993; and Gelbermann, 1995) (refer to section 1.3).
In this interpretation, seismic travel time was converted to depth by the "layer cake"

method, using interval velocities from borehole information.

Figure 18: 3D fault structure of study area along with location map
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3.4 The stratigraphic column

In order to build an accurate stratigraphic column (Figure 19) the geological ages of key
unconformity surfaces were taken from the Stratigraphic Table of Israel, Outcrops and
Subsurface (Fleischer, 2002).

Harizon Colour Age Active
1 Toepludea _ 29.0 Ma
2 o [ 99.0 Ma
3 LC3 112.0 Ma
4 Toplurassic 150,0 Ma
5 TopZohar 159.0 Ma
6 TopDaya _ 168.0 Ma
7 TopQeren _ 176.0 Ma
8 TopTriassic _ 220.0 Ma
9 TopRaaf 240.0 Ma
10 BaseTriassic _ 251.0 Ma

Figure 19: Stratigraphic column used in the restoration process
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3.5 Restoration

3.5.1 Faulting

The present day 2D sections are 'unfaulted' in order to restore the slip between footwall
and hanging wall. By selecting an appropriate restoration algorithm, a geologically viable
geometry should result as the fault displacement is removed. The unfaulting step of the

restoration is considered complete when the hanging wall and footwall cut-offs are joined.

3.5.1.1 Parallel flow unfaulting

The 'Fault Parallel Flow'algorithm is based on 'Particulate Laminar Flow' over a
fault ramp (Egan et al., 1997; Ziesch et al., 2014) and is suitable to restore brittle rock
deformation. It is a scale independent method that describes how material nodes (the
nodes that are used, for example, to construct the geological surfaces of the hanging-wall)
are displaced parallel to the fault plane, in the direction of fault movement (Figure 20).
Using the algorithm, the node points of beds are fixed such that they can only move along
flow planes that are parallel to the fault surface and in the plane of the tectonic transport
vector (Tanner et al. 2003). Bed length and thickness are not maintained as beds pass over
angular changes in the fault surface.

For a first-pass restoration, vertical shear is appropriate. Then iterative steps determine
the appropriate shear angle under the condition that the hanging wall is flattened during

restoration (Move™ knowledge database).

Initial Section After C4 Unfaulting
s
e /N——/——
il | """ﬁﬂ/(._"’fﬂ
r_'—/_—;f/] Base Triassic horizon
(_/,_,\_’_l Base Triassic horizon F’/_—/—’_\_’M
r——//—
| R
L/
3.5.2 Folding

Seismic horizons are defined by geometry and age, and so flattening can reveal significant

features present at a particular time. Unfolding algorithms allow geological (seismic)
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horizons to be restored to a pre-deformation datum. Structural domains are restored by
applying one or more kinematic algorithms. Each algorithm fulfills conditions based on
an assumption of the folding mechanism, in order to restore the deformed-state structure
to its pre-deformation configuration. The horizons in this study are unfolded using the

Simple Shear mechanism.

3.5.2.1 Obligue Simple shear

Simple shear is the geometry produced by slip on closely spaced, parallel planes with
neither length nor thickness changes, neither parallel nor perpendicular to the slip planes
(Tobergte and Curtis, 2006). The 'Simple Shear' unfolding algorithm oblique to bedding
is a kinematic tool that causes bed length and bed thickness changes. In this algorithm,
line length in the unfolding direction varies between the deformed and undeformed states.

(Move™ Help pages).

A
Datum or target suface

wertical Bhear

An oblique simple shear restoration follows the same procedure as the vertical simple-
shear restoration (Figure 21), except that the lines are inclined to the regional trend at an
angle other than 90°. The oblique lengths measured on the deformed state cross section
(Figure 22a) are restored by translation in the shear direction to return the reference
horizon to the regional trend (Figure 22Db).
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3.5.3 Compaction

In order to account for reduction of porosity and expulsion of fluid under pressure of
burial, compaction was taken into account. Compaction can reduce the dip of buried
surfaces such as fault planes. For example, a buried fault plane becomes shallower in dip
(Haneberg, 1988). The variation of porosity with depth is commonly assumed to be
constant through time for any particular lithology (Sclater and Christie, 1980).

In order to account for the compaction of the sedimentary section in the study area, two
data sets were used. Borehole data was obtained from the updated version (Fleischer and
Varshavsky, 2002) of the ATLAS subsurface database (Flexer et al., 1981). Porosity had
been measured on the borehole plugs in the Geological Survey using Helium gas. For
more data on the petrophysical analysis please refer to Calvo et al. (2014). In order to
account for porosity of units not in the porosity surveys, a compaction function was used
based on the work of Sclater and Christie (1980). For more details refer to appendix 8.2.

A formula allowing prediction of compaction with depth of burial is
f=Ffo *e Y, where f represents the present day porosity at depth, f is the porosity at

the surface, C is the porosity depth coefficient (ﬁ) and y is the depth (m).

3.5.4 Flexural Isostasy

As the lithosphere has an inherent strength and rigidity, local load changes due to
contraction, extension or erosion are not isostatically compensated locally, but are
supported regionally. The extent to which the support is spread is determined by the

flexural properties of the lithosphere. Flexural isostasy exerts significant regional control
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on sequence thickness and fault geometry. Hence, flexural isostatic adjustment has a
significant effect on deformation when modeling regional cross sections in regions of

extension or contraction (Move™ knowledge database).
L

Flexural isostasy is used when the

Applied load

a(x) /\ \h

length of the section is on the order

of tens of kilometers or longer. The [ /™~ | T — —— i

~—

-

equations used to model the flexural
response follow Watts (2001). The ¥
deflection w caused by a load q(x)
on a plate with dimensions h X L

(Figure 23) can be calculated using the general equation for the deflection of the plate,

d?w
dx2? "’

(1) D %V = qa(x) = (pm — pw)gw — P
where p,, is the density of the asthenosphere, P is a constant representing the lateral
support of the load in the lithosphere and D is the flexural rigidity defines the strength of
the plate. D is defined as

(2)

where E is Young's modulus. This is the average Young's modulus for all of the rocks in

_ ExTe®
T 12(1-v2)’

the section. It is assumed to be constant throughout the section. In this work it is set to
70,000 mPa and v is Poisson's ratio and is set to 0.25 in this work (Turcotte and Schubert,
2014).

T, is the effective elastic thickness. It is defined as the thickness of a perfectly elastic
layer with the same flexural strength as the lithosphere. It isn't a directly measurable
quantity. T, is a function of Young's modulus and the actual thickness of the crust and in
this work is set to 18000m (Ebinger et al., 1989). The deflection w is calculated for each
column of width x. The deflection of the lithosphere is then summed using a summation
function to calculate the total isostatic response for the whole section. The Move™
workflow assumes that flexural response occurs synchronously with deposition, or
shortly after. In view of the uncertainty in the flexural behavior, the effect of 40% change

in elastic thickness (T,) was explored, and found to be negligible.

22



4 Results

In this study, we took a high resolution look at two buried anticlines, the Qeren-Rogem-
Hazerim and the Agur-Haluza, removing folding and isostasy related thickness variations
in order to examine the complex slip history that was revealed.

Locations of the seismic sections investigated, velocity surveys and the main faults in the
study area are shown in Figure 24. Seismic section EM-7726 is 30.5 km long and crosses
branches of the Agur-Haluza and Qeren-Rogem-Hazerim fault structures from the north
in a WNW- ESE direction. The section straddles the northeastern plunge of the Haluza
anticline in the northern part of the research area, the center of the Hazerim anticline, and
the Qeren-Hazerim faults.

Seismic section EM-7748 is 24.1 km long and crosses branches of the Agur-Haluza and
Qeren-Rogem-Hazerim faults as well, southeastwards in a NW-SE direction. EM-7748
passes through the center of the study area, across the north-eastern plunge of the Agur
anticline and the center of Qeren structure. Two velocity surveys were conducted in the
study area, Qeren_01 and Shezaf 01. The accurate locations of the velocity surveys are

shown in Figure 24.
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Figure 24: Locations of faults, seismic sections and velocity surveys across the study area over a structural map of top Judea horizon (modified after Druckman (1995).
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4.1 Section EM-7748

Figure 25 shows the interpreted section EM-7748 (Figure 25a), the section after depth
conversion (Figure 25b) and after digitization (Figure 25c). For the full data regarding
digitization process refer to section 8.3 in the appendix. Section EM-7748 was converted
to depth using the time-depth correlation from velocity survey Qeren_01. The section
was then sequentially restored using the ‘Fault parallel flow’ unfaulting algorithm,

‘oblique simple shear’ unfolding algorithm, along with decompaction.
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Figure 25: Seismic section EM-7748. (a) Original section (b) Section after depth conversion (c) Section after

depth conversion and digitization.
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4.2 Section EM-7726

Figure 26 shows the interpreted section EM-7726 (Figure 26a), the section after depth
conversion (Figure 26b) and after digitization (Figure 26¢). For the full data regarding
digitization process refer to section 8.3 in the appendix. Section EM-7726 was converted
to depth using the time-depth correlation from velocity survey Shezaf 01. The section
was then sequentially restored using the ‘Fault parallel flow’ unfaulting and ‘oblique

simple shear’ unfolding algorithms, along with decompaction.
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Figure 26: Seismic section EM-7726. (a) Original section (b) Section after depth conversion (c) Section after

depth conversion and digitization.
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4.3 Restoration results

4.3.1 Determination of detection limit

To correctly relate to the relatively poor quality of the analog seismic data records
available, an estimation of error in the amount of slip is necessary. This is needed to filter
out small slips on faults observed in the results that can be caused by poor seismic
resolution that leads to interpretation errors. The average spacing between reflectors was
chosen to represent this error is 80m (Figure 27). All slips below 80m aren’t reviewed.

For the full step-by-step restoration process refer to section 8.4 in the appendix.
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4.3.2 Lower to middle Triassic- after the deposition of base Triassic
horizon (251-240 Myr):

A reverse slip on the Qeren-Rogem fault is observed in both the EM-7748 and EN-7726

sections (Figure 28). This reverse movement lowers the south-eastern flank of the

sections compared to the north-western. The movement is characterized by steps of

approximately 100m: one step in section EM-7748 and two steps in section EM-7726.

There is a gradual thickening towards the SE. The south-eastern flank of the section has

more accommodation space, forming a morphological basin.
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Figure 28: Restoration of lower to middle Triassic in sections EM-7726 and EM-7748

4.3.3 Middle to late Triassic- after the deposition of top Raaf horizon (240-
220 Myr):
Normal slip is observed in section EM-7726 on the Agur-Haluza and Qeren-Rogem-
Hazerim faults (Figure 29). On both faults, the north-western flank is lowered as
compared to the south-eastern flank. The slip amount is relatively higher than that of base
Triassic; 155m on Agur and 170m on Qeren. This is the earliest activity of the Agur fault
noticed in this work. As a continuum to the lower Triassic, there is a gradual thickening
towards the SE. The south-eastern flank of the section has more accommodation space,

forming a morphological basin.
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Figure 29: Restoration middle to late Triassic in sections EM-7726 and EM-7748
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4.3.4 Late Triassic to early Jurassic- after the deposition of top Triassic
horizon (220-176 Myr):

Normal slip continues on the Afur-Haluza and Qeren-Rogem-Hazerim faults in both
seismic sections (Figure 30). The normal slip is observed on all the faults, as compared
to the middle-late Triassic. The normal slips are lowering the north-western part of the
section compared to the south-eastern. On the Qeren-Rogem-Hazerim fault, the slip is in
two steps of 354m and 221m in the northern part (EM-7726) and in a big step of 529m in
the southern part (EM-7748). On the Agur-Haluza fault, the northern flank (EM-7726) is
slipping in an amount below the detection limit (60m, 25m), whereas the southern flank
(EM-7748) slips 1030m and 366m. As a continuum to the middle and late Triassic, there
is a gradual thickening towards the SE.
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Figure 30: Restoration of late Triassic to early Jurassic in sections EM-7726 and EM-7748

4.3.5 Early to middle Jurassic- after the deposition of top Qeren horizon
(176-168 Myr):
Both normal as well as reverse slips are observed in the beginning of the Jurassic period

(Figure 31). On the Agur-Haluza fault, a normal slip of 232m and a reverse slip of 99m
is observed on the northern flank (EM-7726), and a reverse slip of 117m is observed on
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the southern flank (EM-7748). On the Qeren-Rogem-Hazerim fault, reverse and normal
slips are observed on the northern flank (EM-7726), forming a small graben. A normal
slip is observed on the southern flank (EM-7748) of the Qeren-Rogem-Hazerim fault.
The fault structure of the Qeren fault in section EM-7726 is complex and normal and
reverse slips are observed simultaneously. Reverse movement is confined, as compared
to the normal slip, in the Triassic.

Thickness variations throughout both sections show a clear syn-depositional trend of
thickening towards the NW, compared to the SE as before (Figure 29Figure 30). This can
be observed from both sections.
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Figure 31: Restoration of early to middle Jurassic in sections EM-7726 and EM-7748

4.3.6 Middle to late Jurassic- after the deposition of top Daya horizon
(168-159 Myr):

Normal slip continues and dominates the fault slips of Qeren-Rogem on the northern flank

(EM-7726- 136m) as well as southern flank (EM-7748- 207m) (Figure 32). Normal

faulting is also observed in the Qeren-Rogem-Hazerim fault in the northern flank (EM-

7726-102m). A sharp sudden thickness change of the southeastern segment on both

sections causes a reverse slip to be observed.
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Figure 32: Restoration of middle to late Jurassic in sections EM-7726 and EM-7748

4.3.7 Oxfordian to Tithonian in the late Jurassic- after the deposition of
top Zohar horizon (159-150 Myr):

Reverse slip is observed in section EM-7748, in the southern flank of the Agur-Haluza
and Qeren-Rogem-Hazerim faults (Figure 33). The slips are lowering the south-eastern
flank of the section compared to the north-western. The slip amount is relatively high;
89m and 205m on Agur-Haluza and 197m on Qeren-Rogem-Hazerim. This is the first
regional evidence for reverse faulting in the study area.

A thickening trend to the NW is observed as part of a regional trend from the early
Jurassic (Figure 31) from about 250m in the east, to about 375 m in the middle of the
area. It is important to note that the upper boundary of this interval is defined by the
regional base Cretaceous unconformity which has eroded deeper into the Late Jurassic

formations towards the southeast (Druckman et al., 1994).
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Figure 33: Restoration of late Jurassic in sections EM-7726 and EM-7748

4.3.8 Late Jurassic to Albian in lower cretaceous- after the deposition of
Top Jurassic horizon (150-112 Myr):

A quiet tectonic period with no apparent slip on the Agur-Haluza or Qeren-Rogem-
Hazerim faults (Figure 34). A gradual thickening towards the north-west is present,

implying a NW depo-center.
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Figure 34: Restoration of late Jurassic to lower Cretaceous in sections EM-7726 and EM-7748
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4.3.9 Albian in lower Cretaceous to Cenomanian in Upper Cretaceous-

after the deposition of LC3 horizon (112-99 Myr):
Reverse faulting of approximately 100m continues on the Agur-Haluza fault, in the
northern (EM-7726) as well as the southern (EM-7748) segments (Figure 35).
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Figure 35: Restoration lower Cretaceous to upper Cretaceous in sections EM-7726 and EM-7748

4.3.10 Cenomanian to Coniacian in Upper Cretaceous- after the
deposition of C4 horizon (99-89 Myr):

Reverse faulting continues on the Agur-Haluza fault in the northern (EM-7726) and
southern (EM-7748) flanks (Figure 36). Reverse slip is also observed in the Qeren-
Rogem-Hazerim fault on the southern flank, uplifting a part of Mt. Qeren, as seen in the
DEM (Figure 4). Slight normal slips of 77m and 122m in section EM-7726.
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Figure 36: Restoration Cenomanian to Coniacian in upper Cretaceous in sections EM-7726 and EM-7748

4.4 Restoration synthesis

A synthesis of the restoration results on both seismic sections is presented in Figure 37
and Figure 38. Normal throws are presented as positive values and reverse throws are
presented as negative values. A grey rectangle represents the detection limit below which
throw amounts aren’t reviewed, to account for the relatively low quality of the seismic

data (please refer to section 4.1).
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Figure 37: Restoration synthesis of section EM-7726. Y axis represents the amount of throw on a numbered fault. Negative values are reverse

throws and positive are normal throws. A grey rectangle represents the detection limit of the amount of throw, -80m to 80m.
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Figure 38: Restoration synthesis of section EM-7748. Y axis represents the amount of throw on a numbered fault. Negative values are reverse
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5 Discussion

The tectonic development of the northern Negev anticlines and other related structures
was recounted by Freund et al. (1975). According to his concept, the present-day high
angle reverse faults that underlie monoclines in places (Druckman et al., 1994) were
normal faults in the early Mesozoic. This followed from thickness and facies analyses of
the Late Triassic and Early Jurassic formations in the northern Negev. The model that
was suggested for the structural development of the Syrian Arc monoclines was a
‘structure inversion model’ (Freund et al., 1975; Druckman et al., 1994). Since then,
spatial variations were observed in the timing of the folding process on various
monoclines (Freund and Zak, 1973), shifting from the post-Judea group in the Negev
monoclines to Eocene in the Hebron and Ramallah cases. Others stated that there is no
reason to believe that the folding in the Negev, the Sinai and the Judean hills was strictly
contemporaneous (Begin, 1981). As the folding process is associated with the faulting
underneath, one can assume spatial variations of the faulting process as well.

According to Freund’s model (1975), the faults that underlie the monoclines of Israel
were re-activated once. Begin’s (1981) work on the Qeren area did not clarify whether
Qeren is a reverse or a normal fault. As the present work showed, it intermittently flipped
between both types of faulting. From the Qeren and Agur deformation history since the
Mesozoic, several re-activations of the Qeren and Agur faults can be discerned. The
amount of displacement (slip) in these structures varies on nearly all the stratigraphic
markers throughout the entire sedimentary sequence, indicating that several deformation

events took place.

5.1 Timing the shortening periods in the Qeren-Agur area

According to widely held concepts, the Triassic was a period of extension. It is
contemporaneous with orogenic deformation and magmatism in Turkey and Iran (Freund
et al., 1975). Whether starting in the Late Permian and continuing to middle Triassic
(Granot, 2016) or starting in the early Triassic and continuing to the Jurassic (Garfunkel
and Derin, 1984; Gardosh and Druckman, 2006), it is related to the rifting of the Neo-
Tethys ocean (e.g Hardy et al., 2010; Stampfli, 2000; Freund et al., 1975; Gardosh and
Druckman, 2006; Garfunkel, 2004). Normal faults trending NE-SW, detected onshore
and offshore by geophysical studies and borehole data (Freund et al., 1975; Gardosh and
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Druckman, 2006), are also clearly seen in the results of this study. Normal slip of over
100m on the Agur and Qeren structures was observed for the middle Triassic (220 Myr),
and continued to the late Jurassic (150 Myr). This normal slip activity is seen both in the
northern (EM-7726) and southern (EM-7748) segments of the Qeren and Agur structures
(Figure 28). According to Freund et al. (1975), the structure in the northern Negev would
have consisted of blocks tilted to the south-east and separated by normal faults dipping to
the northwest. Each of the present anticlines would have been, according to this
interpretation, a separate tilted block basin. This structure is clearly seen in the results as
well (Figure 29,Figure 30, 37,38).

According to Freund et al. (1975) and Stampfli (2000), from the Turonian (Upper
Cretaceous) and onto the Cenozoic, a shortening regime was established in the region, in
correlation with the Alpine orogeny in the north-east. As part of this shortening regime,
there was a reactivation of the normal Triassic faults to a reverse slip (Garfunkel, 2004;
Gardosh and Druckman, 2006), and formation of the S-shaped Syrian arc monoclines
(Moustafa, 2013; Shahar, 1994). This is well established in the present study, although
the timing of the reverse slip is somewhat earlier than what was known from surface
studies inland (Eran, 1982) and Seismics from the Mediterranean: Sagy et al. (2015),
Gardosh and Druckman (2006), and Gardosh et al. (2010).

According to the present results, reverse slip in the SE-NW direction was observed from
the Cenomanian to Coniacian (99-89 Myr) (Upper Cretaceous) (Figure 26,37,38) but also
earlier; the Albian to Cenomanian (112-99 Myr) in the Agur structure (Figure 35,37,38)
and Oxfordian to Tithonian (late Jurassic) (150-159 Myr) in both Agur and Qeren
structures (Figure 33,37,38). The reverse slip phase in the top Jurassic is observed only
on the southern flank of both the Qeren and Agur structures (EM-7748), and is separated
from the lower Cretaceous by 40 Myr (150-112 Myr) tectonically quiet period (Figure
34), along both structures.

Two scenarios can explain the results. According to the first scenario, the shortening
related to the Syrian arc mechanism was activated early on the Agur and Qeren structures
in the northern Negev. Due to limited outcrops of Paleozoic, Triassic and Jurassic rock
units in Israel, data about the Early Mesozoic tectonic history of the southern Levant is
rare. The evidence, however rare, support a regime of extension. In the Ramon structure
NNE-SSW extension ruled during the Lower Jurassic (Hardy et al., 2010). In addition,
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tectonic and magmatic activity of Liassic to Bajocian age (Early to middle Jurassic) was
very prominent next to the southern Levant Basin (Gardosh and Druckman, 2006). There
is also evidence for tectonic activity in the Tauride block which produced widespread
clastics and unconformities at the base of the Jurassic section (Gutnic et al., 1979; Monod
and Akay, 1984; Demirtasli, 1984) which may be interpreted as block faulting related to
extension (Garfunkel, 1998). Also, the earliest period of Alpine related deformation is
timed to the upper Cretaceous/early Tertiary (Ring, 1992; Butler et al., 2006). Combined
with the lack of published evidence for reverse faulting in Israel earlier than Cretaceous,
these make the first scenario less probable.

The second scenario involves slip partitioning (Bowman et al., 2010). According to this,
the reverse slip detected is part of a complex oblique fault system in the subsurface, which
is partially expressed in this area by a reverse slip. This can be supported by the
fragmentation of Qeren and Agur structures, as observed from the 3D model (Figure 24).
These reverse faults can then be viewed as a local expression of distributed deformation
of the crust (Deves et al., 2011). When modelled as a strain weakening elasto-plastic
material, the crust deforms in a combination of localized and distributed deformation. The
geometric and kinematic evolution has import on the deformation style, causing some
deformation to localize and some to remain distributed in process zones. In such zones,
geometric complexities prevent localization (Deveés et al., 2011). This produces small
faults with various orientations. Such a scenario can explain the co-existence of early
Jurassic reverse as well as normal throws (Figure 31). The variety of faulting directions
modelled for distributed deformation is supported by highly variable focal mechanisms
for small earthquakes, along the Dead Sea (Hofstetter et al., 2007), the Carmel fault
(Hofstetter et al., 1996) and the entire Sinai sub-plate (Salamon et al., 2003), just to give

local examples.

5.2 Evidence for strike-slip in the Cenomanian

A normal slip of 158m is detected in the Cenomanian to Coniacian in Upper Cretaceous
(99-89 Myr) (Figure 36) in section EM-7726 at the south-eastern fault of the Qeren
structure. In the same period 20km to the south (EM-7748), a reverse slip of 904m is
observed. Although the quality of the seismic data is low, the slip is detected in the upper

part of the seismic section, thus supporting the interpretation. From the 3D structure of
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the northern part of Qeren, a flower structure comes to mind (Figure 39). This structure
is strongly correlated to possible strike-slip activity (Woodcock and Fischer, 1986).
Obligue motion along tectonic boundaries is commonly partitioned into slip on faults with
pure senses of motion (dip- and strike-slip). Partitioning can be explained by the upward
propagation of oblique slip from a fault or shear zone at depth. The strain field ahead of
the propagating fault separates into zones of predominantly normal, reverse, and strike-
slip faulting (Bowman et al., 2010). The faults of strike-slip duplexes may converge
downwards and appear in vertical sections as flower structures (Woodcock and Fischer,
1986).

positive
flower structure

Figure 39: Left- Flower structure scheme (Woodcock and Fischer, 1986), Right- possible flower structure from
3D model

Evidence for strike slip activity is observed in the Ramon (Becker, 1994) and Hebron
(Reches et al., 1981) anticlines. These are associated with reverse faults, and are showing
a right-lateral displacement (Hardy et al., 2010). The development of both extensional
and compressional (strike-slip and reverse) structures during the Late Cretaceous to Early
Cenozoic period can be explained in the general context of the Late Cretaceous to
Paleogene continuous inversion (Eyal and Reches, 1983; Eyal, 1996). The normal faults
described may reflect local transitions of the principal stresses, causing changes in the
stress regimes. Transitions between strike-slip and normal regimes (e.g. Angelier et al.,
2000), and between strike-slip and reverse regimes (e.g. Homberg et al., 2002) have been
previously described. Their occurrence implies that two of the principal stresses are
similar in magnitude (Hardy et al., 2010).
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5.3 Thickness variations in the middle Jurassic

An apparent reverse fault is detected in the middle to late Jurassic (168-159 Myr), in the
south eastern faults of the Qeren structure, in both the northern (EM-7748) and southern
(EM-7748) parts (Figure 32). Also, a sudden change in thickness of the Daya layer is
observed, limited only to the southeastern flank in both seismic sections. The thickness
of Daya layer was significantly reduced from 650m to 150m.

From looking at Daya horizon in the 3D maps, a topographic ‘low’ in the NE-SW
direction stretches 75km along the Qeren-Agur area (Figure 40). The topographic 'low'
seems to be bounded by a fault from the south, dipping to the north and forming steep

slopes on the Daya horizon, forming a basin.

Figure 40: Top Daya horizon surface (168 Myr) along with locations of seismic sections and surveys, showing a
topographic ‘low’ on the south-eastern side of both seismic sections. Survey locations are taken from Druckman
(1994).

This basin is a part of the Qeren-Haluza depression referred to by Freund et al. (1975) as
part of a regional extension, indicated by normal faults in the Jurassic period (Freund et
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al., 1975). Another way to interpret the thickness variation of the south-eastern segment
of both sections lies in the uplift of the area after normal faulting of the Qeren structure
in the late Triassic to early Jurassic (176-168 Myr) (Figure 31). Thickness variations in
the following period, middle to late Jurassic (168-159 Myr) (Figure 32) can then be
explained by erosion, as there was less deposition on the uplifted part than on other
segments, or was eroded afterwards.

From lithological observations, the Jurassic Daya layer as defined in this study (Top
Qeren to Top Daya horizons) consists of the Inmar and Daya Formations. These consist
of fluvial and fluvio-deltaic sandstones, siltstones and mudstones. Regression took place
during the deposition of the Upper member of the Inmar Formation. This regression was
the most extensive in the Jurassic in Israel. The section continues with the shallow marine
shelf and tidal carbonates and sandstones of the Daya Formation, representing
transgression (Goldberg and Friedman, 1974, Druckman et al., 1995). Non-marine
sedimentary deposits can vary laterally and generate thickness variations during or after
deposition. Both proposed scenarios can be envisioned to interpret the thickness

variations observed, as they do not contradict one another.

5.4 From SE regional trend in the Triassic to NW in following periods
Thickness variations appear across the section, as observed from the unfolded seismic
horizons. The thickness of the Triassic units (Figure 41) changes from 1410m NW to
4059m SE in section EM-7748 and from 1376m NW to 2631 SE in section EM-7726.
This shows a clear trend of thickening towards the SE. In the Jurassic and Cretaceous
horizons (Figure 36Figure 32) the thickness changes more gradually, showing a regional
gradient towards the NW. The regional gradient has thus changed from the SE in the
Triassic to the NW in later periods.

In the southern section (EM-7748), sediment thickness of the late Triassic to middle
Jurassic (176-168 Myr) interval varies laterally from 1417m in NW to 400m in SE. In the
northern section (EM-7726), sediment thickness varies laterally from 955m in NW to
338m in SE. In the period interval of middle to late Jurassic (168-159), section EM-7726
shows a lateral variation of 551m NW and 510m SE and section EN-7748 shows lateral
variation of 930m NW to 700m SE, a change of ~200m.

The lateral variation in the late Triassic to middle Jurassic (176-168 Myr) was higher than

in the following period. It can be thus inferred, that the change in regional gradient was
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limited to a short period in the middle Jurassic, where a local syn-depositional syn-
sedimentary event took place. In the Triassic, there was an uplift of southern Israel, as
inferred from the thickness variation of Triassic strata (Hall et al., 2005). This change in
regional trend in early Jurassic can be related to the rapid subsidence and accumulation
of thick marine sequences in the Mediterranean (Freund, 1975; Druckman, 1995),
following the thin Paleozoic platform sediments. The subsidence made room for
accumulation of a few kilometers thick sedimentary wedge. As the direction of the
sections is perpendicular (EM-7748) and sub-perpendicular (EM-7726) to the strike of
the Agur and Qeren structures (parallel and sub-parallel to the dip), and the sections are
restored in 2D, there is more than one option to the location of the depo-center in each of
these periods.
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Figure 41: Thickness variations in both sections EM-7726 and EM-7748 after top Triassic (a) and after top

Qeren horizon (b) deposition

The results show a reverse slip of ~100m on the northern as well as on the southern
segments of the Qeren fault (Figure 28). The depth of the base Triassic horizon on the
original seismic section is 4-5km in EM-7726 and 5-6km in EM-7748 (4-6 km) (Figure

43

BaseTramic



25, Figure 26). This result should be taken with a grain of salt: The seismic data
investigated, collected 1986, is of a relatively low quality. Moreover, there is no
supporting evidence for an early Triassic reverse movement. To the contrary, plenty of
evidence is available for rifting and normal faulting around the entire Levant (Guiraud,
1998; Garfunkel, 2004; Gardosh et al., 2010; Hardy et al., 2010). In view of these

arguments, the reverse slip discerned is erroneous.

6 Conclusions

Sequential restoration carried out on two seismic sections cutting the Qeren and Agur
fault structures in the northern Negev yielded useful insights on the structural evolution
of both structures. The seismic sections cut the Qeren and Agur fault structures, EM-7726
from north and EM-7748 from south. Also, both sections are in the direction (EM-7748
NW-SE) or close to the direction (EM-7726 WNW-ESE) of the true dip, thus providing
a suitable setting for evaluation of both structures’ structural evolution. The process
included removal of the effects of sediment compaction, isostatic adjustment, fault-
related folding and fault-slip in order to restore each seismic section to the time of
deposition of ten horizons, from base Triassic to Coniacian in upper Cretaceous.
Relating to the research objectives, temporal structural evolution of the Agur and Qeren
structures was tested against known constrained tectonic regimes. Normal slip is resolved
both in the northern and southern segments of the Agur and Qeren structures, in what is
correlated to the Neo-Tethyan rifting in the early Mesozoic (Figure 29,30). Reverse slip
is resolved both in the northern and southern segments of the Agur and Qeren structures,
in what is correlated to the Alpine-related shortening during the Cretaceous (Figure
35Figure 36). Nonetheless, there were clear differences between the northern and
southern flanks of the Agur and Qeren, and between the Qeren and Agur structures as a
whole.

Hidden tectonic phases of deformation were clearly observed in both structures. Reverse
slip was detected in the Agur structure (north and south) during early to middle Jurassic
(Figure 31). Reverse slip was also detected on the southern flanks of Agur and Qeren
during the late Jurassic (Figure 33). This can be the earliest evidence of shortening in our
region. These faults may also represent a local, rather than a regional, stress field. The

use of structural restoration in an area with tectonic constraints proved to be effective in
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shedding light on various phases of deformation on complex faults. The results highlight
the complexity of tectonic inversion and the early onset of shortening in the Levant
(Figures 37,38). Nonetheless, the low quality of seismic data used for restoration can
highly influence the results. Taking this into consideration, this technique can now be

used as a validation technique in poorly constrained geological structures elsewhere.
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8

Appendix

8.1 Depth conversion

A comparison was made between both velocity check-shot surveys, to validate the use

of both in the depth conversion of the study area. To do so, Shezaf time values were

subtracted from Qeren time values. The maximum difference was 0.027 s, an error of
5%.
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8.2 Compaction calculation
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8.3 Stratigraphic interpretation

8.3.1 EM-7748
In order to sequentially restore an interpreted seismic section, all stratigraphic horizons
should be continuous along the section. However, in section EM-7748, three horizons
were absent in various parts across the section. Those were reconstructed following
geological assumptions.

1. '"Top Raaf" horizon is missing from the northwestern part of the section, probably

not mapped. 'Top Raaf' horizon was constructed according to an assumption of

constant thickness between the horizons 'Top Triassic' and "Top Raaf'
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2. In order to keep the continuity of 'C4" and 'LC3' horizons across the section,
same thickness between horizons ‘C4’°, ‘LC3’ and ‘Top Judea’ was estimated
on the footwall and hanging wall of the most northern fault in the section. Figure

below shows the section before (a) and after (b) horizon construction.
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3. From thickness considerations, horizon 'C4' was constructed along the entire

section. The construction process is shown in the figure below.
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8.3.2 EM-7726

In order to perform sequential restoration on an interpreted seismic section, all

stratigraphic horizons should be continuous along the section. However, in section EM-
7726, two horizons were absent in various parts across the section. Those were
reconstructed following geological assumptions.

1. The thickness of the stratigraphic units inside the fault wedge was estimated

from the average thickness between the horizons on both sides of the wedge.
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Figure below shows the initial interpreted section (a) and the section after

horizon construction (b).

2. Thickness between horizon 'C4' and ‘Top Judea’ was calculated along the
northern side of the section from the thickness between those horizons on the
southern side of the fault. Figure below shows the process of horizon

construction.
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8.4 Restoration procedure

8.4.1 EM-7748
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Post Judean reverse faulting on the southern Agur fault (2) with a slip of 125.3 m and
southern Qeren fault (4) with a slip of 903.7 m

58



C4 horizon unfaulting
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LC3 horizon unfaulting
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Top Jurassic horizon unfaulting
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Top Zohar horizon unfaulting
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Top Daya horizon unfaulting
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Top Daya horizon unfolding
Thickening towards the NW, from 680 m on the SE side to 1059 m in the NW
Sudden thickness change at SE, thickness reduces to 150-180 m.
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Top Qeren horizon unfaulting
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Top Triassic horizon unfaulting
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Top Raaf horizon unfaulting
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Base Triassic horizon unfolding
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8.4.3 Sequential restoration results
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C4 horizon decompaction

Post LC3 horizon reverse slip on fault 1 of 89.8 m and 2 of 179.3m. Normal slip creating

a graben on faults 4 (61 m slip) and 5 (62 m slip), Reverse slip on 6 of 54 m
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Top Jurassic horizon unfaulting
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Top Zohar horizon unfolding

No apparent thickness variations
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Top Daya horizon decompaction

Normal slip on 1 of 232 m. Reverse on 2 of 98.8 m, 3 of 75.3 m.
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Top Triassic horizon unfaulting
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